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Association Mapping and Significance Estimation
via the Coalescent

Gad Kimmel,1,2,* Richard M. Karp,1,2 Michael I. Jordan,1,3 and Eran Halperin2

The central questions asked in whole-genome association studies are how to locate associated regions in the genome and how to esti-

mate the significance of these findings. Researchers usually do this by testing each SNP separately for association and then applying

a suitable correction for multiple-hypothesis testing. However, SNPs are correlated by the unobserved genealogy of the population,

and a more powerful statistical methodology would attempt to take this genealogy into account. Leveraging the genealogy in association

studies is challenging, however, because the inference of the genealogy from the genotypes is a computationally intensive task, in par-

ticular when recombination is modeled, as in ancestral recombination graphs. Furthermore, if large numbers of genealogies are imputed

from the genotypes, the power of the study might decrease if these imputed genealogies create an additional multiple-hypothesis testing

burden. Indeed, we show in this paper that several existing methods that aim to address this problem suffer either from low power or

from a very high false-positive rate; their performance is generally not better than the standard approach of separate testing of SNPs. We

suggest a new genealogy-based approach, CAMP (coalescent-based association mapping), that takes into account the trade-off between

the complexity of the genealogy and the power lost due to the additional multiple hypotheses. Our experiments show that CAMP yields

a significant increase in power relative to that of previous methods and that it can more accurately locate the associated region.
Introduction

Recent advances in genotyping technologies have consid-

erably improved our understanding of common complex

diseases through whole-genome association studies. In

these studies a population of cases and controls is col-

lected, and hundreds of thousands of single nucleotide

polymorphisms (SNPs) are genotyped. These studies search

for SNPs that are associated with the studied disease by

measuring the difference in the SNP-allele distributions

between the cases and the controls (e.g.,1,2).

Because complex diseases are caused by multiple envi-

ronmental and genetic factors, the differences in allele

frequencies between the cases and the controls for any

given SNP can be expected to be quite small. Therefore,

analyses that achieve high statistical power are essential

for these studies. Additionally, although current technol-

ogy (e.g., the Affymetrix SNP Array 6.0 and the Illumina

human1m-duo beadchip) allows measurement of nearly

two million genetic variants for each individual, this is still

only a fraction of the set of genetic variants, and statistical

methods are needed to cope with this partial assessment of

genetic variation.

The statistical analysis of a typical association study

involves the testing of individual SNPs or genomic regions

for association and the evaluation of the significance of the

findings. The simplest approach to significance testing is to

test each marker separately for association.3,4

Many approaches have attempted to move beyond sep-

arate testing by leveraging the unobserved genealogy of

the chromosomes (e.g.,5,6). Such proposals aim to increase

statistical power by taking into account the dependency
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among SNPs. Model-based approaches in particular try to

infer aspects of the unobserved genealogy. In practice,

however, this is not a trivial task because one must infer

the genealogy from the genotypes. As we show in this pa-

per, the loss of information caused by erroneous inference

of the genealogy can be detrimental to the association, and

thus genealogy-based methods are not always desirable.

Previous methods that have used genealogies in associa-

tion studies have faced two main challenges. First, the num-

ber of possible genealogies is very large, and even more so

when recombination events are taken into account; thus,

it is infeasible to examine all possible genealogies. Second,

an inferred genealogy determines a large set of genealogy-

based association tests (these can be expressed as tests of

SNP interactions); a major challenge is how to choose a

subset of these tests such that the increased number of

hypotheses tested will not decrease the power. If the tests

are not chosen properly, the statistical power can be reduced

considerably as a result of the burden of multiple hypothe-

ses, even when the genealogical modeling is accurate.

In this paper, we suggest a new genealogy-based approach

that takes into account the trade-off between the complex-

ity of the genealogy and the power lost because of multiple

hypotheses. The approach we present seeks to avoid exces-

sive power loss due to multiple testing while still testing the

observed mutations and selected putative unobserved mu-

tations suggested by plausible genealogies. As with previous

genealogy-based methods, we test selected SNP interac-

tions. The core of our method is to exploit properties of

the coalescent to decide which interactions can be ignored.

In a nutshell, we construct a perfect phylogeny graph that

represents the genealogy of the haplotypes and restrict
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attention to observed mutations and to unobserved muta-

tions that are consistent with that graph.

Many genealogy-based association tests have been sug-

gested in earlier work. One popular way of using genealogy

in association studies is through the use of ancestral recom-

bination graphs7 (ARGs). These graphs aim to model the

coalescence and the recombination events explicitly. Sev-

eral studies have proposed performing full-likelihood or

Bayesian inference under the ARG model (e.g.,8,9). This is,

however, a technically challenging problem, and the

proposed solutions are computationally feasible only on

relatively small data sets. Zollner and Pritchard5 suggested

solving this inference problem with an approximation ap-

proach in which one tests for association by performing

a likelihood ratio test by calculating the probability of the

disease mutation given the genotypes and the disease

status. The inference is performed by a Markov chain Monte

Carlo (MCMC) algorithm. This approach has the advan-

tages of model-based procedures, but it is too expensive

computationally to be used in a large-scale whole-genome

association study.

A different approximation approach to association map-

ping was suggested by Durrant et al.10 Their main idea was

to perform a cladistic analysis of SNPs. The cladogram cap-

tures the successive partitioning of SNP haplotypes into

clusters. At each partition, clusters of haplotypes from

the previous partition are merged such that the mean pair-

wise haplotype diversity is minimized within the new

clade. The cladogram is built with a sliding window of

SNPs. In each window the best partition of haplotypes is

chosen. This procedure incorporates two levels of multiple

testing, which are adjusted by a Bonferroni correction.

Minichiello and Durbin6 introduced another approxi-

mation scheme for the inference of ARGs. There are two

stages to their analysis: First, they attempt to infer all plau-

sible ARGs by using a heuristic algorithm. Second, a genea-

logical tree at each locus is built, and a possible causative

mutation at each branch is tested. Because the true ARG

is unknown, this analysis is averaged over a set of inferred

ARGs.

In general, the genealogy-based methods are meant to

improve upon the naive approach to association testing;

in such an approach, each SNP is tested separately via a c2

test, and the tests are adjusted for multiple-hypothesis test-

ing with a permutation test (we will refer to this approach as

standard c2). To assess the extent to which existing methods

have realized this goal, we compared these methods to the

naive approach. In our experiments, we found that the

naive approach has more power and a lower false-positive

rate than any of the tested methods. This surprising result

was the motivation for our new genealogy-based method,

which we refer to as CAMP (coalescent-based association

mapping).

Like previous methods, CAMP tests for interactions of

SNPs or haplotypes with disease. To address the issues of

computational complexity and multiple-hypothesis test-

ing, we have emphasized reducing the number of tests.
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The core of our method is to exploit properties of the

coalescent to decide which interactions can be ignored.

In brief, we construct a perfect phylogeny graph which

represents the genealogy of the haplotypes and restrict

attention to observed mutations and to unobserved muta-

tions that are consistent with that graph, in the sense that

each of the unobserved mutations is consistent with

a larger graph that retains the perfect-phylogeny property.

The larger graph represents a genealogy of the haplotypes

with the unobserved mutation.

As opposed to ARGs, our method does not model the re-

combination events explicitly in detail. Indeed, we begin

our presentation by making the simplifying assumption

that there are no recombinations across the studied region

and that there are no recurrent mutations (this is often re-

ferred to as a perfect phylogeny model, or a coalescent model

with the infinite site assumption). It is well known that in

order to satisfy the assertion that a region is consistent

with a perfect phylogeny model, the region has to comply

with the four-gamete test; put differently, every pair of

SNPs has at most three out of the four possible haplotypes.

We use this characterization to define a simple version of

our method for generating unobserved mutations. We

then back off from the simplifying assumption of no

recombination and consider a model that allows some de-

viation from the four-gamete condition. This yields the

CAMP algorithm, which can be viewed as a procedure for

defining tests based on an approximate genealogy. A simi-

lar approach has been taken by Eskin et al. in their work on

haplotype phasing (Eskin et al., 2003, in RECOMB 03. The

Association for Computing Machinery, 104–113).

In order to evaluate the power achieved by CAMP, we

have tested CAMP on an extensive number of simulated

data sets. Our experiments show that CAMP yields a signif-

icant increase in power relative to that of previous methods.

In particular, unlike previous methods, CAMP achieves an

increase of more than 10% over the standard c2. This advan-

tage was observed with different sampling distances of SNPs

and with different numbers of individuals. Thus, by using

our method in association studies, we expect that more as-

sociated SNPs will be discovered as a result of the increased

power.

Material and Methods

The General Framework
We begin by sketching the main idea of our approach. As in previ-

ous approaches, our goal is to exploit the unobserved genealogy of

the population in order to map and evaluate the significance of as-

sociations. We do this by performing additional tests of interactions

between SNPs; these tests correspond to unobserved mutations

along the genealogical tree.

The basic idea of our approach is to restrict attention to interac-

tions between pairs of SNPs that may represent a plausible muta-

tion along a genealogy. Our approach relies strongly on the theory

of perfect phylogeny of SNPs and haplotypes. Several studies in the

literature have focused on this combinatorial object and yielded
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theoretical characterizations that provide the basis of our

approach; for background see 11,12,13,14.

Notation and Definitions
Let n be the number of individuals tested and m be the number

of markers. The 2n 3 m haplotype matrix is denoted by H. Hence,

Hi, j¼ s if the ith haplotype has type s at the jth marker, where s can

be 0 or 1. Let the vector of the disease status be d. The entries of

d are 0 (for a healthy individual) or 1 (for an individual who has

the disease).

For a pair of discrete vectors x and y, let U(x, y) denote their con-

tingency table; i.e., U(x, y) is a matrix in which U(x, y)i, j¼ j{kjx(k)¼
i, y(k)¼ j}j (in our case, the matrix is of size 2 3 2 because a SNP has

two values and there are two disease states). An association function

A is a function that assigns a positive score to a contingency table.

Typical examples of association functions are the Pearson score

and the Armitage trend statistic. We have used the Pearson score

in our work; however, it is important to point out that our algo-

rithm does not use any specific properties of the association func-

tion, apart from the property that the score is a function of the

contingency table and the following symmetry property (which

holds for the Pearson score):

A

��
a b
c d

��
¼ A

��
a c
b d

��
: (1)

An association score is a function of the haplotype matrix and an

arbitrary disease vector e (a binary vector of dimension 2n) and is

defined by S(H, e) ¼maxj A[U(H$, j, e)], i.e., the value of the associ-

ation function at the most associated locus.

The goal is to calculate the significance of a pair (H, e), which is

defined as the probability of obtaining an association score at least

as large as S(H, e) under a null model. Formally, if e is a random dis-

ease vector, the p value is Pr[S(H, e) R S(H, d)]. In addition, we want

to accurately find the location of the associated SNPs in the

genome. In our case, the null model is defined according to the

randomization model in which e ¼ p(d) is a permutation of

the disease vector and all instances p(d) are equiprobable.

In addition to testing all the SNPs of H, we also test selected SNP

interactions. For a set of SNPs j1, j2, ., jk, suppose that there are J

different haplotypes induced by these SNPs, and let h(j1, j2, ., jk)

be the 2n-dimensional haplotype vector induced by these SNPs (so

that each element of h(j1, j2, ., jk) is an integer between zero and

J� 1). A combinatorial interaction of the SNPs j1, j2, ., jk is a binary

vector v that has dimension 2n and corresponds to a partition of

the J haplotypes into two sets S1 and S2. Formally, let S1, S2 be dis-

joint sets of integers such that S1 W S2 ¼ {0, 1, 2, ., J � 1}. Then,

v(i) ¼ 0 if h(j1, j2, ., jk) ˛ S1, and v(i) ¼ 1 if h(j1, j2, ., jk) ˛ S2.

The Perfect Phylogeny Tree

Our method is based on the construction of a perfect phylogeny

tree and a specific choice of interactions among the SNPs based

on the tree. A perfect phylogeny tree is a genealogical tree in which

every node corresponds to a haplotype and every edge corre-

sponds to a mutation (Figure 1). In a perfect phylogeny tree, we as-

sume no recombination events and no recurrent mutations. Thus,

such a genealogy is equivalent to the coalescent tree with the

infinite-site assumption.

In a perfect-phylogeny model, every pair of SNPs satisfies the

four-gamete test. Formally, for two SNP vectors H$, i, H$, j, we

consider the haplotype counts Ca, b(i, j) ¼ j{Hx, i, Hx, jjHx, i ¼ a,

Hx, j ¼ b}j. For example, C0, 0(i, j) is the number of haplotypes in

which SNPs i and j both equal 0. We say that the pair of SNPs
The American
(i, j) satisfies the four-gamete test if there exists at least one pair

(a, b) for which Ca, b(i, j) ¼ 0.

The Algorithm
The intuition for our method is based on the case where the data

are consistent with the perfect-phylogeny model. Our algorithm

can be applied also to cases where there are deviations from the

perfect phylogeny, as discussed in the section Handling Recombi-

nation Events below. The algorithm can be outlined as follows:

1. Build a perfect-phylogeny tree.

2. Select all pairs of SNPs that correspond to adjacent edges in

the tree (edges that share a common vertex).

3. For each selected pair of SNPs, add a combinatorial interac-

tion vector to the haplotype matrix H as a column.

4. Perform an association test by using the augmented haplo-

type matrix H.

The newly added columns represent putative unobserved SNPs

that are plausible given the observed SNPs. In the algorithm de-

scribed above, we added all pairwise interactions of SNPs but no

higher-order interactions of SNPs. It is straightforward to extend

this algorithm to also test higher orders of interactions, i.e., haplo-

types with more than two SNPs. We restrict the discussion in this

paper to pairwise interactions because we observed experimentally

that higher-order interactions did not attain statistically signifi-

cant improvement of the power (data not shown). We note that

in the case of pairwise interactions, the association tests are prac-

tically done on haplotypes; the extension of this method to

higher-order interactions cannot, however, be expressed as a

haplotype test.

Figure 1. An Example of a Perfect Phylogeny Tree
Each node corresponds to a haplotype. The mutations appear on
the edges. (A) A perfect phylogeny with five SNPs. (B) An addi-
tional sixth SNP that was mutated and can be expressed as the
interaction between SNPs 4 and 5.
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The algorithm finds the value of the association function for

each SNP and each interaction, along with the corresponding asso-

ciation score. We use a permutation test to determine the signifi-

cance of this score (corrected for multiple hypotheses). Because

permutation tests can be quite inefficient, we use an importance

sampling method for efficient calculation of the permutation

test.4 Note that the algorithm we use is generic and that we could

use any test for association for each of the interactions (e.g., a

two-by-two c2 test or a three-by-two trend test).

Even though the above algorithm is quite simple, it is not imme-

diately clear where the gain in power comes from. In the remain-

der of this section, we will describe the rationale for the algorithm.

In order to do so, we will begin with the case where the perfect-

phylogeny model is consistent with the data. We will explain later

how we deal with deviations from the perfect-phylogeny model.

We begin by describing in detail the process for adding combina-

torial interaction vectors and the interpretation of this process as

imputed unobserved SNPs.

Selecting the SNP Interactions

Each edge of a perfect phylogeny corresponds to a mutation in

some SNP. Contracting an edge in the tree corresponds to the

removal of the SNP associated with the edge from the dataset.

Thus, every unobserved SNP corresponds to a contracted edge.

More generally, we can view a perfect phylogeny on a set of ob-

served SNPs as the result of a series of edge contractions on a larger

perfect phylogeny determined by both observed and unobserved

SNPs. It follows that the effect of adding an unobserved SNP to

a perfect phylogeny must be to reverse an edge contraction; i.e.,

to split a node into two copies and insert an edge joining the

two copies.

Every putative unobserved SNP that our algorithm constructs

corresponds to such an edge insertion. Here, we limit ourselves

to the simplest kind of edge insertions: those resulting from the

interaction between a pair of observed SNPs corresponding to

adjacent edges of the perfect phylogeny.

Any two observed SNPs correspond to edges in the tree, and the

deletion of those edges induces three subtrees, which correspond

to three different joint values of the two SNPs. For instance, in

Figure 1A, the deletion of SNPs 1 and 5 induces three subtrees,

where the first contains the haplotypes S1 ¼ {11000, 10000,

10100}, the second contains the haplotypes S2 ¼ {00000, 00010},

and the third contains the haplotype S3 ¼ {00011}. By our defini-

tion of an interaction (a partition of the set of haplotypes), an

interaction between the two SNPs corresponds to a partition of

the haplotypes into a set Sk versus the rest of the haplotypes.

Thus, there are three possible interactions defined by a pair of

SNPs (i, j). However, two of the three interactions correspond to

testing one of the SNPs i or j. For instance, in the case of the pair

(1,5) described above, testing the interaction (S3, S1 W S2) is equiv-

alent to testing SNP 5. In general, under the perfect-phylogeny

assumption, every pair of SNPs has at most one nontrivial interac-

tion that does not correspond to testing one of the SNPs. This can

be shown by case analysis of all possible interactions of SNPs in

such a scenario. When SNPs i and j correspond to adjacent edges,

the nontrivial interaction corresponds to splitting a node and

inserting an edge between the two copies. Indeed, our algorithm

imputes precisely the unobserved SNPs that correspond to

nontrivial interactions between adjacent edges.

Consider for example the case presented in Figure 1. Assume that

SNPs 1, ., 5 are genotyped and that SNP 6 is the causal SNP. In this

case, testing the interaction between SNPs 4 and 5 in the original

tree is equivalent to testing SNP 6. Similarly, testing the interactions
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between SNPs 2 and 3 is equivalent to testing potential causal SNPs

that has mutated after SNP 1 has mutated but before SNPs 2 and 3

have mutated. The CAMP algorithm restricts the set of tested

interactions to interactions that correspond to such cases.

We note that there are other edge insertions that are not induced

by the interaction of two SNPs. For instance, in the case of a starlike

perfect phylogeny in which every leaf is adjacent to the root, any

subset of the SNPs may correspond to a mutation that occurred

after the root but before this set of SNPs. In CAMP, we do not

consider such higher-order combinatorial interactions, although

in theory they may potentially increase power.

The number of tests performed by our algorithm can be qua-

dratic in the number of SNPs (e.g., if the perfect-phylogeny tree

is a star). However, in practice the great majority of pairs of edges

will not be adjacent. In particular, if the tree is degree bounded

(i.e., the maximum number of edges that touch one vertex is be-

low some constant number), the number of imputed unobserved

SNPs will be linear in the number of observed SNPs.

Handling Recombination Events
The algorithm that we have described thus far is based on the

perfect-phylogeny model, which assumes no recombination

events. We now describe a modification of our algorithm that pulls

back from this simplifying assumption and attempts to partially

account for recombination events. One may view this modifica-

tion as an approximation of the perfect-phylogeny model.

In the modified algorithm, in place of the perfect-phylogeny

tree we instead construct a perfect-phylogeny graph. Each node in

this graph represents a SNP. The edges in the graph are directed

and are defined below.

There are two possible relationships between SNPs in the perfect

phylogeny: (1) The haplotype 00 can have two descendant haplo-

types, 01 and 10, which corresponds to a brotherhood relation be-

tween the two SNPs; or (2) the haplotype 00 can have a descendant

01, which has a descendant 11, which corresponds to a parenthood

relation between the two SNPs.

We say that two SNPs i and j are in a brotherhood relation if

C0, 0(i, j)C1, 1(i, j) < C0, 1(i, j)C1, 0(i, j); otherwise, these SNPs are in

a parenthood relation. If SNPs i and j are in a parenthood relation,

then i is defined to be an ancestor of j if C1, 0(i, j) > C0, 1(i, j). It is

easy to see that, in the case of a perfect phylogeny in which the

root is the haplotype for which all alleles have value 0, this defini-

tion agrees precisely with the notion of ancestry in the phylogeny

tree. Similarly, if i and j are in a brotherhood relation, then neither

of them is an ancestor of the other. We now define the edges in the

perfect-phylogeny graph as follows: There is a directed edge from

vertex vi to vj if vi is an ancestor of vj and there is no other vertex vx

such that vi is an ancestor of vx and vx is an ancestor of vj. Such

a graph can be built via a topological sorting of the vertices.

In this construction we assume that the root of the tree is the

haplotype for which all alleles have value 0; we can justify this

by rooting the tree in one of the existing haplotypes and renaming

the alleles of each SNP so that the root will satisfy this assumption.

Similarly to the way we perform the original algorithm de-

scribed in the section titled The Algorithm, we test the interaction

of two SNPs if they have a common parent in the perfect-phylog-

eny graph or if one of them is the parent of the other. In construct-

ing the perfect-phylogeny graph, we do not consider relations of

pairs of SNPs whose physical separation in the genome is higher

than some threshold c. We call this threshold the linkage upper

bound.
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Observe that if there are no recombination events, the modified

algorithm described in this section is equivalent to the algorithm

described in the section titled The Algorithm. In a perfect phylog-

eny, at least one of the four C0, 0(i, j), C1, 1(i, j), C0, 1(i, j), or C1, 0(i, j)

equals zero (i.e., the four-gamete test holds), whereas here we do

not require this property in order to decide the relationship of

the SNPs.

Results

Data Sets

In order to test our approach, we needed a large data set that

contains a sequence of several megabases for thousands of

individuals. Currently, such a data set does not exist, and

therefore we generated simulated population data as fol-

lows. We used the SNPs obtained from the HapMap data

set as a starting point. To amplify these data, we assumed

a fixed population size of 10,000, a mutation rate of 10�8

and a recombination rate of 10�8. In each generation, indi-

viduals are mated randomly to produce the next genera-

tion. The number of children generated by two individuals

is a random variable with a predefined distribution. We used

30,000 generations to generate the final population sample.

This process was done for 15 Mbp along one chromosome.

Note that we did not use an approximation-based approach

(such as the coalescent model with recombination events or

the Li and Stephens model15) to simulate the population,

but rather we used an explicit forward simulation of

the population, and this simulation initiates from a real

data set.

We used a multiplicative model to generate samples of

cases and controls. We simulated experiments with 1000

cases and 1000 controls. A panel is defined to be one exper-

iment. For each panel, a SNP was randomly chosen to be

the causal SNP and was then removed from the panel.

We set the disease prevalence to 0.01 and the relative risk

to 1.5. We set the linkage upper bound (c) to 50 kb, which

has been shown to be a good estimate in humans (e.g.,4).

We used the perfect-phylogeny-graph algorithm described

in the section titled Handling Recombination Events.

The running time of CAMP for 500 cases and 500 controls

for 38,864 SNPs on chromosome 1 (corresponding to the

Affymetrix SNP chip) on a Sun workstation (with a Quad

2.4 GHz AMD Opteron 850 Processor) is 4 min to calculate

the scores for each SNP and an additional 18 min for a

standard-permutation test.

Evaluation of Previous Methods

Many of the existing genealogy-based methods are compu-

tationally inefficient, and thus a large-scale evaluation of

these methods is prohibitive. Our experiments involved

thousands of panels, each containing thousands of haplo-

types with thousands of SNPs, and thus we concentrated

on the evaluation of methods that are efficient enough

to handle data sets of this size. In particular, coalescent-

based methods such as LATAG5 are not computationally

feasible for large-scale data sets. The Margarita6 algorithm
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is also too computationally intensive: It took more than

two weeks to analyze a data set of 500 cases and controls

with 10,000 SNPs (we used the recommended parameters

by the developers: 30 ARGs and 100 permutations).

We did, however, test the power of Margarita on a small

number of SNPs and individuals. To our surprise, the

power of Margarita was not as good as the standard c2

test under several of the scenarios that we studied; because

Margarita assumes the coalescent model, we tested it on

null data produced with a coalescent model, upon which

phenotypes were randomly assigned (i.e., in which there

is no causal SNP). We generated 100 different panels of

size 25 kb by using the ms software (Hudson), which sim-

ulates data under the coalescent model. In these experi-

ments we generated 50 individuals, who were randomly

assigned to be cases or controls. We found that the false-

positive rate (using a p value cutoff of 0.05) was 1%. We

used the following strong association model: We arbitrarily

set one of the SNPs as a strong causal SNP by declaring an

individual to be a case if the corresponding SNP was either

heterozygous or homozygous 1 and otherwise declaring

the individual to be a control. Using this model, we

observed that the power of Margarita is 17%, whereas the

power that is obtained by a standard-permutation test

was much higher: 69%.

We repeated the same experiments described above by

simulating additional panels of SNPs by using the ms soft-

ware with recombination events. We found that the false-

positive rate in this case was 89%. The power for the

strong-association model was 69%, versus 75% obtained

by the standard-permutation test.

These results show that there are serious problems with

existing methods either with respect to running time or

power. Indeed, our results show that these methods are

dominated by the standard c2 approach in the scenarios

that we studied. We thus used the standard c2 approach

as a baseline in our experimental study of CAMP. We also

compared CAMP to CLADHC10 because CLADHC is

computationally feasible in our scenarios.

Power

To study the power of the methods, we applied them to

case-control panels by using the multiplicative model for

generating cases and controls as described in the section

titled Data Sets. A panel is generated from the whole se-

quence, and then the SNPs are sampled according to the

specified sparsity (i.e., density of the sampled SNPs). There-

fore, in many cases (but not always) the causal SNP does

not exist in the SNP-sampled panel. Under a specific signif-

icance level (which controls the type I error), the relative

power is defined as a ratio in which the numerator is the

number of SNP-sampled panels defined to be significant

and the denominator is the number of original panels

with the entire sequence, including the causal SNP, defined

to be significant.

We simulated panels with 1,000 cases and 1,000 con-

trols. We fixed the sparsity of the sampled SNPs to each
Journal of Human Genetics 83, 675–683, December 12, 2008 679



Figure 2. The Relative Power for Different Sampling Distances of SNPs and for Four Different Significance Levels
of the following values: (1,000, 2,000, ., 10,000). For each

value of sampling sparsity, 5,000 different panels were

generated. Results for the different SNP sampling densities

are presented in Figure 2, and results for different numbers

of cases and controls are presented in Figure 3. The differ-

ence in the relative power between CAMP and standard c2

testing reaches more than 10%. An even more prominent

difference is observed between CAMP and CLADHC and

ranges up to 52.7%.

Localization of the Causal SNP

We also tested the accuracy in localizing the causal SNP. To

obtain an estimate of location from the output of CAMP,

note first that CAMP may output more than one SNP. These

SNPs presumably represent mutations on the genealogical

tree near the causal SNP; thus, we use the average location

of the SNPs found by CAMP to estimate the position of

the causal SNP. A comparison to the c2 test is presented in

Figure 4 for different numbers of individuals. The advantage

of CAMP over the standard c2 is quite notable; e.g., for 3,000

controls and cases, the percentage of panels for which the

distance between the found location and the true causal

SNP is below 100 Kb was 86% for CAMP and 79% for the

standard c2.
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Measuring the Advantage of the Coalescent Approach

Our algorithm tests a subset of all possible interactions.

This subset, as described before, is determined according

to the approximated genealogical relations between the

SNPs. Does testing all possible interactions within the

linkage upper bound give similar results? To answer this

Figure 3. Relative Power for Different Numbers of Individuals
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Figure 4. A comparison of the Cumulative Distribution Functions for the Distance between the Discovered SNP and the True
Causal SNP
The three figures represent the results obtained from different numbers of controls and cases: A - 1,000, B - 2,000, C - 3,000.
question, we compared CAMP to a procedure that tests all

pairwise interactions within the linkage upper bound. For

two SNPs, this corresponds to testing the association be-

tween the haplotypes generated by the SNPs and the phe-

notype, which is calculated by a standard c2 test for these

two vectors.

The results are presented in Figure 5. As can be seen,

CAMP yields significantly greater power than the proce-

dure that tests all pairwise interactions. Reaching more

than 50%, the difference between these procedures is

much larger than the difference between CAMP and the

standard c2 algorithm.

Using the Phased Haplotypes

Because CAMP uses phased data to construct the coales-

cent graph, we tested the effect of phasing errors on our

algorithm by considering phasing error rates of 3%, 30%,

and 50%. The value of 3% corresponds roughly to the error

rate reported in the literature for phasing algorithms16, and

50% corresponds to randomly phasing each one of the

heterozygous sites.

Results are presented in Figure 6. As can be observed in

the graph, even when the phasing error rate is 50% (which
The American
is very unlikely), CAMP has a relative power that is 9%

larger than the standard c2 test (for a significance level of

5%). With phasing error rates of 3% and even 30%, no

significant reduction in the power is observed.

Discussion

We have presented a method that leverages the coalescent

model to conduct association mapping in whole-genome

association studies. We exploit the unobserved genealogy

of the chromosomes in order to evaluate more accurately

the significance and location of causal SNPs. The geneal-

ogy defines a set of haplotypes, and our method consists

of a strategy for selecting tests on the basis of these haplo-

types and the genealogy. As we have demonstrated, select-

ing these tests carefully gives a large advantage in the

power and in the localization of the causal SNP. We have

also shown that several existing methods that aimed to

address this problem either suffer from low power or suffer

from a very high false-positive rate when they are com-

pared to a standard approach in which each of the SNPs

is tested separately with a c2 test. We have also shown
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that considering all SNP interactions reduces the power

considerably.

Interestingly, we observed that introducing very high

rates of phasing errors (30%) does not reduce the power

of our method. This can be explained by the fact that

when enough individuals are given, the genealogical rela-

tionship between SNPs can be determined accurately, even

if the heterozygous sites are ignored. The signal is strong

enough in the homozygous sites so that phasing accuracy

has a minor effect on the results.

Accurate localization of the causal SNP is as important as

significance estimation. We have shown that CAMP esti-

mates the location of the real causal SNP more accurately

than other methods. Note, moreover, that this was

achieved by a relatively naive approach of taking the aver-

age of the interacting SNPs. Most likely, the location can be

determined even more accurately by a more sophisticated

algorithm that uses properties of the coalescent.

There are several important issues that need further atten-

tion. We have shown that CAMP is more powerful than the

standard c2 test, but we have not shown its optimality. The

question of whether there exists a more powerful algorithm

or strategy for choosing a subset of interactions of SNPs

should be explored. In particular, it is intriguing to study

the following optimization problem: For a fixed disease

model (say, the multiplicative model with given penetrance

and relative risk) and significance level, find the strategy

that determines which SNP interactions are tested, such

that the power is maximized.

It is also important to study the generalizations of

methods such as CAMP to the case where multiple popula-

tions may be participating in the study. One of the chal-

lenges in drawing causal inferences from whole-genome

case-control association studies is the confounding effect

of population structure.17–24 This issue has received much

attention in recent years in the literature (e.g.,24,25). Cur-

rently, CAMP assumes no stratification effect, i.e., the

Figure 5. A Comparison of CAMP to a Naive Pairwise-Interac-
tion Algorithm, in Which All Pairwise Interactions of SNPs with
Distances Smaller Than the Threshold Used in CAMP Are Tested
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controls and cases are presumed to be from one population.

There is a clear need to explore methods for taking popula-

tion stratification into account in CAMP.

Because CAMP performs transformation on the SNP

data, it can be naturally extended to handle other types

of phenotypes such as continuous traits (QTLs), although

this was not tested experimentally in this work.

The cost of genotyping is continually decreasing, and

technology is evolving toward genome resequencing (e.g.,

Illumina/Solexa 1G and Roche/454). However, it is still

very expensive to conduct resequencing of the whole ge-

nome as a tool for association studies. Consequently, it is

clear that genotype data of common genetic variants such

as SNPs will be the leading approach in association studies

in the coming years. Algorithms such as CAMP that yield

high statistical power by exploiting aspects of genealogy

will play an important role in the analysis of these data.
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Web Resources

The URLs for data presented herein are as follows:

Hapmap project, http://www.hapmap.org

Illumina/Solexa, http://www.illumina.com

Roche/454, http://www.454.com

ms – A program for generating samples under neutral models,

http://home.uchicago.edu/rhudson1/source/mksamples.html

Figure 6. A Comparison of the Relative Power of CAMP in the
Presence of Different Rates of Phasing Errors
er 12, 2008

http://www.hapmap.org
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CAMP – coalescent-based association mapping (the algorithm de-

scribed in this paper), http://www2.icsi.berkeley.edu/kimmel/

software/camp
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